Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides

نویسندگان

  • Jean Decamp
  • Bess Fang
  • Anna Minguzzi
  • Patrizia Vignolo
چکیده

We consider a mixture of one-dimensional strongly interacting Fermi gases with up to six components, subjected to a longitudinal harmonic confinement. In the limit of infinitely strong repulsions we provide an exact solution which generalizes the one for the two-component mixture. We show that an imbalanced mixture under harmonic confinement displays partial spatial separation among the components, with a structure which depends on the relative population of the various components. Furthermore, we provide a symmetry characterization of the ground and excited states of the mixture introducing and evaluating a suitable operator, namely the conjugacy class sum. We show that, even under external confinement, the gas has a definite symmetry which corresponds to the most symmetric one compatible with the imbalance among the components. This generalizes the predictions of the Lieb-Mattis theorem for a fermionic mixture with more than two components. ar X iv :1 60 3. 00 25 2v 2 [ co nd -m at .q ua nt -g as ] 1 8 M ay 2 01 6 Exact density profiles and symmetry classification for strongly interacting fermions 2 PACS numbers: 05.30.-d,67.85.-d,67.85.Pq

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solution for infinitely strongly interacting Fermi gases in tight waveguides.

We present an exact analytical solution of the fundamental systems of quasi-one-dimensional spin-1/2 fermions with infinite repulsion for an arbitrary confining potential. The eigenfunctions are constructed by the combination of Girardeau's hard-core contacting boundary condition and group theoretical method, which guarantees the obtained states to be simultaneously the eigenstates of S and S_{...

متن کامل

Super-Tonks-Girardeau gas of spin-1/2 interacting fermions.

Fermi gases confined in tight one-dimensional waveguides form two-particle bound states of atoms in the presence of a strongly attractive interaction. Based on the exact solution of the one-dimensional spin-1/2 interacting Fermi gas, we demonstrate that a stable excited state with no pairing between attractive fermionic atoms can be realized by a sudden switch of interaction from the strongly r...

متن کامل

Pairing instabilities in quasi-two-dimensional Fermi gases

We study nonequilibrium dynamics of ultracold two-component Fermi gases in low-dimensional geometries after the interactions are quenched from a weakly interacting to a strongly interacting regime. We develop a T-matrix formalism that takes into account the interplay between Pauli blocking and tight confinement in lowdimensional geometries. We employ our formalism to study the formation of mole...

متن کامل

Strongly Interacting Fermi Gases under the Microscope

Strongly Interacting Fermi Gases under the Microscope Martin Zwierlein Massachusetts Institute of Technology, Cambridge, USA Strongly interacting fermions govern the physics of e.g. high-temperature superconductors, nuclear matter and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not even understand at a qualitative le...

متن کامل

Multicomponent strongly attractive Fermi gas: A color superconductor in a one-dimensional harmonic trap

Recent advances in ultracold atomic Fermi gases make it possible to achieve a fermionic superfluid with multiple spin components. In this context, any mean-field description is expected to fail, owing to the presence of tightly bound clusters or molecules that consist of more than two particles. Here we present a detailed study of a strongly interacting multicomponent Fermi gas in a highly elon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016